
Multiple Factors-Aware Diffusion
in Social Networks

Chung-Kuang Chou(B) and Ming-Syan Chen

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
ckchou@arbor.ee.ntu.edu.tw, mschen@cc.ee.ntu.edu.tw

Abstract. Information diffusion is a natural phenomenon that informa-
tion propagates from nodes to nodes over a social network. The behavior
that a node adopts an information piece in a social network can be
affected by different factors. Previously, many diffusion models are pro-
posed to consider one or several fixed factors. The factors affecting the
adoption decision of a node are different from one to another and may
not be seen before. For a different scenario of diffusion with new factors,
previous diffusion models may not model the diffusion well, or are not
applicable at all. In this work, our aim is to design a diffusion model
in which factors considered are flexible to extend and change. We fur-
ther propose a framework of learning parameters of the model, which
is independent of factors considered. Therefore, with different factors,
our diffusion model can be adapted to more scenarios of diffusion with-
out requiring the modification of the diffusion model and the learning
framework. In the experiment, we show that our diffusion model is very
effective on the task of activation prediction on a Twitter dataset.

Keywords: Social networks · Diffusion models

1 Introduction

Information diffusion in social networks has been an active research field in about
a decade. It is a natural phenomenon that information propagates from nodes
to nodes over a social network, which acts like an epidemic. There are many
applications on information diffusion, such as promoting an idea more effectively
[5,10] , blocking adverse opinions [3,11], or identifying information flows [13]
in a network. A well-known problem therein is called influence maximization,
formulated by Kempe et al. [10]. The problem of influence maximization is to
find a group of target nodes to be convinced of an idea initially to maximize
the spread size, i.e. the number of nodes adopting the idea, on a given diffusion
model.

To model how information diffuses in a network, researchers have proposed
various diffusion models from different aspects. In these diffusion models, the
Independent Cascading (IC) model and the Linear Threshold (LT) Model [10]
c© Springer International Publishing Switzerland 2015
T. Cao et al. (Eds.): PAKDD 2015, Part I, LNAI 9077, pp. 70–81, 2015.
DOI: 10.1007/978-3-319-18038-0 6

Multiple Factors-Aware Diffusion in Social Networks 71

have been widely employed in many applications and have several variants [1].
Both models consider the influence strength of a neighbor. The key difference
is that, for a node turning to adopt an idea, IC considers only the influence
from exactly one activated neighbor with uncertainty, while LT considers the
collaborative influence contribution from all activated neighbors. In other words,
IC places importance on which neighbor tries to affect the node to adopt the idea
whereas LT thinks highly on the overall influence contribution from neighbors.
Nevertheless, the real world is so complicated that a simple concern is hard to
capture such complexity. Many factors probably affect the decision of adoption.
For example, an idea that has been adopted by most people will have more
chance to influence somebody [9] and an idea is harder to be adopted by someone
as time passes. Moreover, a person may have different strength of interests in
different topics [1]. However, the factors considered by previous diffusion models
in social networks are all fixed. For a different scenario of diffusion with new
factors, previous diffusion models may not model the diffusion well, or are not
applicable at all. Therefore, one usually has to propose a new diffusion model
for modeling diffusion of a specific scenario better by considering new factors.

To design a diffusion model for different factors one by one and to propose the
corresponding algorithms, e.g. parameters learning and influence maximization,
both become tedious. In this work, we aim to design a diffusion model which can
consider multiple factors flexibly and further propose a framework of learning
parameters of the model, related to information transmission likelihood between
nodes and adoption prediction of a node. To the best of our knowledge, no exist-
ing work has the same sight. Specifically, we propose a Multiple-Factors Aware
Diffusion (MFAD) model which is able to consider multiple factors flexibly that
may affect adoption behaviors. MFAD is a two-stage propagation model. In the
first stage, called influence transmission, an activated node u tries to influence
its inactivated neighbor v with a probability. If the influence of u is successfully
transmitted to v, in the second stage, called adoption decision, v decides whether
it becomes activated based on its considerations, predicted via its related classi-
fication model trained on historical adoption information. Unfortunately, due to
the limitation of observation in the real world, only positive instances are avail-
able to train classifiers , which is hard to achieve good performance. We further
design a mechanism to get unlabeled instances to help train nodes’ classifiers
and propose the learning framework to learn the classifiers and transmission
probabilities between nodes. Our contributions are summarized as follows.
1. Our proposed MFAD model is flexible to extend and change factors since

we employ a classification approach to predicting the adoption behavior of
a node.

2. Our proposed learning framework is independent of factors considered and
we show the learning framework is effective in the experiment.

3. Due to the limitation of observation on diffusion in the real world, to predict
adoption behaviors is hard to reach good results. We explicitly tackle this
issue by learning nodes’ classifiers for adoption decision with only positive
and unlabeled instances.

72 C.-K. Chou and M.-S. Chen

The remaining of the paper is organized as follows. We next review the related
work in Section 2. We introduce our diffusion model in Section 3 and how to
learn the model in Section 4. In Section 5, we conduct experiments on a Twitter
dataset. Finally, we conclude in Section 6.

2 Related Work

In this section, we briefly review the related works on diffusion models in social
networks and learning parameters of diffusion models.

Diffusion models interpret how information spreads within a network. As
mentioned above, IC and LT are two classical models and have been widely
employed since they were connected to the influence maximization problem [10].
Recently, more factors of diffusion are explored in the literature like [1], [9] and
[14], to name a few. N. Barbieri et al. [1] extend the IC model to consider topic
distribution of items. T.-A. Hoang and E.-P. Lim [9] propose a model considering
three factors, user virality, user susceptibility and item virality. Moreover, S.A.
Myers et al. [14] explore not only internal influence from activated nodes in a
network, but also external influence outside the network. However, as discussed
above, the factors considered by these diffusion models are all fixed. For a dif-
ferent scenario of diffusion with new factors, these models may not model the
diffusion well, or are not applicable at all.

Although diffusion models in social networks have been proposed for a long
time, algorithms to learn parameters of a diffusion model are proposed recently.
For example, K. Saito et al. [16] first propose a learning method for the IC model.
The following up works mainly propose learning methods for their own diffusion
models [1]. Moreover, A. Goyal et al. [7] propose the Credit Distribution model
that directly estimates spread size from diffusion data without learning influence
probabilities between nodes. Since we aim to design a learning framework that
is independent of the diffusion factors considered, the above results do not apply
to our scenario.

3 Proposed Model

In the work, our aim is to design a diffusion model which considers multiple
factors flexibly for information propagation. We propose the Multiple Factors-
Aware Diffusion (MFAD) model in the section.

Given a social graph G = (V,E), where V is the node set and E is the
edge set composed of directed edges without multiple edges and self-loops, let
pu,v denote the probability of node u to successfully transmit influence to node
v ∈ u’s out-neighbors Nout(u) after u is activated by an item i and let fv(x)
denote a probabilistic classifier for node v where fv(x) considers multiple prede-
fined features, i.e. factors, that affect the tendency of u to adopt item i after v
is exposed to i and x is the feature vector of the exposure. Note that a nonprob-
abilistic classification model, the outputs of which can be transformed to the
probabilistic outputs [15], is applicable to fv(x), e.g. SVM with Platt scaling.
The Multiple Factors-Aware Diffusion (MFAD) model is defined as follows.

Multiple Factors-Aware Diffusion in Social Networks 73

Fig. 1. The successful activation process of MFAD

Definition 1. Multiple Factors-Aware Diffusion (MFAD) model. The propaga-
tion of diffusion starts with initial seed nodes S0 ⊆ V which have adopted item i.
In the first timestamp t1, each u ∈ S0 tries to influence u’s out-neighbors which
are not activated by item i. The successful activation probability for v ∈ Nout(u)
is calculated as pu,vfv(x). The activated nodes in t1 are denoted as S1. In times-
tamp t2, new activated nodes in S1 try to activate their inactivated out-neighbors
in the same process as the above. The process runs iteratively. If Sj is empty in
timestamp tj, the diffusion terminates. Note that the spread size can be expressed
as | ∪0≤i≤j−1 Si| and when a node becomes activated, it never turns to be inac-
tivated.

MFAD is a two-stage propagation model. An illustration of the successful
activation process in MFAD is shown as Figure 1. In the first stage, called influ-
ence transmission, a node u tries to influence each v ∈ Nout(u) which is not
activated with probability pu,v in timestamp ti−1, where u is activated in times-
tamp ti−2. However, the influence successfully transmitted over the edge does
not directly activate a node. Our model has the following stage, called adoption
decision. In the second stage, if the influence of u is successfully transmitted with
probability pu,v to v previously, v receives this influence and decides whether it
becomes activated based on its considerations, predicted via its classification
model fv(x). If v is activated, v will try to influence its neighbors in the next
timestamp ti. Consider a news diffusing in an online social network, e.g. Face-
book and Twitter. A user u posted a message about the news recently. Due to the
ranking mechanism designed by Facebook or since there are too many messages,
a friend v of u may not see the message, which is modeled by influence transmis-
sion. Moreover, even if the friend v reads the message, v may consider whether
to share or reply to the message based on several concerns, e.g. v’s interests, the
importance of the news, which is modeled by adoption decision. In contrast to
the traditional diffusion models, MFAD is flexible to consider multiple factors
and considers more in a microscopic view for information propagation.

4 Two-Stage Learning

In this section, we propose a two-stage learning framework for MFAD since
MFAD is a two-stage propagation model. In the first stage, the classifier of each

74 C.-K. Chou and M.-S. Chen

node is trained, which corresponds to adoption decision, while the transmission
probability between two connected nodes is estimated in the second stage, which
corresponds to influence transmission. We first introduce the observed data.

Observed Data. A propagation trace consists of activation records. Each record
{u, v, i, t} represents that node u adopts an item i at timestamp t and the adop-
tion is caused by u’s in-neighbor v. If u is actually a seed of the item in the
observed data, v does not exist and is set to be NIL. In reality, we usually
do not observe that a node fails to influence others. In other words, we would
only have positive instances for training classifiers directly from the propagation
trace. We next discuss how to learn classifiers of nodes in such a situation.

4.1 Learning Classifiers of Nodes

Due to the limitation of observation in the real world, only positive instances are
available to train binary classifiers of each nodes. However, a classifier trained
on only positive instances is hard to achieve good performance. In fact, unlabeled
instances can provide more information for learning, e.g. feature distribution, and
can be generated via observing that an inactivated out-neighbor of an activated
node does not turn activated in the next timestamp. We use the term unlabeled
instead of negative since an unlabeled instance may be positive or negative due to
the limitation of observation. Thus, the task of the first-stage learning becomes
training classifiers by using positive and unlabeled instances. In the literature
[6,12], the problem is called positive and unlabeled learning. Among previous
work on positive and unlabeled learning, C. Elkan and K. Noto [6] provide a
principled way to assigning weights to unlabeled instances. Based on their work
[6], we construct a framework to learn nodes’ classifiers for MFAD. In the follow-
ing, we first describe how to obtain unlabeled instances from observed positive
records and then describe how to train a node’s classifier based on positive and
unlabeled instances.

Obtaining Unlabeled Instances. With observed positive records, we can
analyze the whole propagation trace to get positive instances for training nodes’
classifiers with ease. However, negative instances are hard to obtain due to two
main reasons: (1) an item does not successfully be exposed to a node from its in-
neighbor; (2) the observation window for a node is not long enough. Fortunately,
we can generate unlabeled instances to help train a node’s classifier.

Assume that we have the complete propagation trace which consists of posi-
tive records in the format of (u, s, i, t, o = 1) where the binary variable o indicates
whether a record is an observed positive record in the trace or not. If a node
u adopts an item i from s at timestamp t, we can observe u’s out-neighbors
who haven’t adopted i from timestamp t. For an out-neighbor v of u, if v does
not adopt i in the complete propagation trace, we generate an unlabeled record
(v, u, i, t′, o = 0), where t′ is the end observation time of propagation trace. How-
ever, the approach is with high cost and does not work if the size of the trace
is extremely large. For a program to sequentially trace the positive records in

Multiple Factors-Aware Diffusion in Social Networks 75

Algorithm 1. Unlabeled Record Generation

chronological order, it has to memorize all items that a node has not adopted
in order to generate unlabeled records at the end of tracing, which is impossi-
ble for a single machine with limited memory size. Otherwise, multiple scans are
needed, which incurs many disk I/O operations and therefore is time-consuming.

In a more general way, we propose Algorithm 1 to trace positive records to
generate unlabeled records. Let T be the time window to observe whether an
out-neighbor v of u, for a positive record (u, s, i, t, 1), adopts i before t + T .
The main idea of the algorithm is that if v does not adopt i before t + T , the
algorithm generates an unlabeled record (v, u, i, t, 0). Although the pseudo code
of Algorithm 1 is written in a batch way, it is easy to adapt it to process positive
records coming in a streaming way. Note that a feature vector x, i.e. an instance,
is generated at the same time when a positive record is traced or an unlabeled
record is generated in order to capture the state of an exposure.

Training a Node’s Classifier. With the above approach, for a node u, we
can obtain positive instances P(u) and unlabeled instances U(u) for training
u’s classifier in order to predict the adoption tendency of an instance. Given
an instance x, the goal is to predict p(a = 1|x), where a is a binary random
variable to indicate whether the instance is positive (a = 1) or negative (a = 0).
Recall that o is a binary variable to indicate an instance is observed (o = 1) or
unlabeled (o = 0). In the lemma derived in [6], p(a = 1|x) = p(o = 1|x)/c, where
c = p(o = 1|a = 1) is a constant value1. Based on the lemma, they [6] further
reach the result on how to give weights to instances rigorously as the following.
The weight of a positive instance is still unit, while an unlabeled instance have
two copies, where one copy is a positive instance with weight p(a = 1|x, o = 0)
and the other copy is a negative instance with weight 1 − p(a = 1|x, o = 0).

1 Due to the space limit, we omit the details of the lemma. If readers are interested
in the lemma and the corresponding results, please refer to [6].

76 C.-K. Chou and M.-S. Chen

Note that p(a = 1|x, o = 0) = 1−c
c

p(o=1|x)
1−p(o=1|x) . Thus, our task here becomes three

subtasks: (1) to learn p(o = 1|x), (2) estimate c and (3) learn p(a = 1|x).
Specifically, for a node u, (1) we first train a nontraditional classifier gu(x) =

pu(o = 1|x) on P(u)−V(u) and U(u), where the instances in V(u) are randomly
selected from P(u), which is reserved as a validation set to estimate c. (2) Next,
c is estimated as 1

|V(u)|
∑
x∈V(u) gu(x) according to [6]. (3) Finally, we construct

positive instances P
′(u) and negative instances N(u) to train a traditional classi-

fier fu(x) = pu(a = 1|x) for the node u. P
′(u) contains the instances in P(u) and

copies from the instances in U(u) with each weight pu(a = 1|x, o = 0). N(u) con-
sists of copies from the instances in U(u) with each weight 1−pu(a = 1|x, o = 0).
In the experiments, we use the logistic regression to train both gu(x) and fu(x)
since its output probability is well-calibrated [6] by applying the above way.

4.2 Learning the Transmission Probability

With the above P(v), U(v) and the trained classifier fv(x) for each node v ∈ V ,
we now describe how to learn transmission probability between two connected
nodes. Let D =

⋃
v∈V (P(v)∪U(v)) denote the dataset for learning transmission

probabilities. An instance x ∈ D is in the format of (f1, f2, ..., fm)[u,v,o,t,i] where
u is the node that tries to activate v by item i before time t (xo = 1) or at time
t (xo = 0), o is a binary variable to indicate whether v is activated during the
observation in Algorithm 1 and f1, f2, ..., fm are factors of adoption, calculated
in the same time of running Algorithm 1 for the exposure. An instance x ∈ D is
unlabeled if xo = 0; otherwise, x is positive.

We train the MFAD model via maximizing the likelihood of D in the MFAD
model. Let Ds denote the data of node s in D, i.e. Ds = {x ∈ D|xv = s},
and let Θ denote all parameters of the MFAD model to learn, i.e. all transmis-
sion probabilities, and Θs = {pq,s|q ∈ N in(s)} denote transmission probabilities
between node s and its in-neighbors N in(s). Assuming adoptions between nodes
are independent, the complete data log-likelihood can be expressed as follows.

L(Θ; D) = log
∏

s∈V
L(Θs;Ds) (1)

Note that since we want to learn transmission probability between two connected
nodes, we exclude an instance x, xu of which is NIL, from D. Moreover, since
fs(x) for each node s has trained in the above, the data likelihood of each Ds is
only related to Θs. To maximize Eq.(1) is equal to maximizing each L(Θs;Ds),i.e.

∀s ∈ V,max
Θs

logL(Θs;Ds). (2)

In reality, the diffusion happens in a continuous time space, while MFAD is
a discrete time-based diffusion model. We include time constraints Δ+ and Δ−

to decide the validity of an instance. Let D+ = {x ∈ D|xo = 1} and D− = {x ∈
D|xo = 0}. We define D+

s and D−s as follows.

D+
s ={x ∈ Ds|xo = 1 ∧ ∃y ∈ D+(yv = xu ∧ yi = xi ∧ 0 ≤ xt − yt ≤ Δ+)} (3)

Multiple Factors-Aware Diffusion in Social Networks 77

D−s ={x ∈ Ds|xo = 0 ∧ ∃y ∈ D+(yv = xu ∧ yi = xi ∧ 0 ≤ xt − yt ≤ Δ−)} (4)

Note that for an instance x ∈ D+, xu ∈ N in(xv) should hold, where N in(v)
is v’s in-neighbor set. The data likelihood of node s is then defined as

L(Θs;Ds) =
∏

q∈Nin(s)

∏

x∈D+
q,s

(pq,sfs(x))
∏

q∈Nin(s)

∏

x∈D−
q,s

(1− pq,sfs(x)), (5)

where

fs(x) = ps(a = 1|x),D+
q,s = {x ∈ D+

s |xu = q}
and D−q,s = {x ∈ D−s |xu = q}. (6)

The data log-likelihood of node s is:

logL(Θs;Ds) =
∑

q∈Nin(s)

[
∑

x∈D+
q,s

log(pq,sfs(x)) +
∑

x∈D−
q,s

log(1− pq,sfs(x))] (7)

To find pq,s by maximizing the above log likelihood, let ∂ logL(Θs;Ds)
∂pq,s

= 0:

∑

x∈D+
q,s

1
pq,s

+
∑

x∈D−
q,s

−fs(x)
1− pq,sfs(x) = 0 (8)

Since no closed form solution for Eq.(8) exists, we employ the Brent’s algo-
rithm [2]. The Brent’s algorithm uses a combination of golden section search
and successive parabolic interpolation. For an initial good guess p0

q,s in order to
converge fast, we apply the first order Taylor series to approximate −fs(x)

1−pq,sfs(x)

at pq,s = 0 as −fs(x)− fs(x)2pq,s. Thus, the Eq. (8) becomes

∑

x∈D+
q,s

1
pq,s

+
∑

x∈D−
q,s

[−fs(x)− fs(x)2pq,s] = 0 (9)

and by some mathematical manipulation we get p̂q,s = −C+
√
C2+4BD
2D , where

B = |D+
q,s|, C =

∑
x∈D−

q,s
fs(x) and D =

∑
x∈D−

q,s
fs(x)2. Note that D should

be a real number greater than 0 and obviously, B and C are non-negative real
numbers. In some situation, p̂q,s will not be a valid probability value, the value
(3−√5)

2 suggested in the Brent’s algorithm [2] is used instead.

5 Experiments

In the section, we conduct experiments on a Twitter dataset to evaluate the
effectiveness on activation prediction. We first describe the setup.

78 C.-K. Chou and M.-S. Chen

Table 1. Data Statistics

T training instances testing instances
positive unlabeled all positive unlabeled all

positive negative positive negative

3 17,197 274,575 236,807 528,579 115,955 80,243 15,288 211,486
6 17,197 270,467 236,807 524,471 114,463 78,788 15,940 209,191

12 17,197 263,750 236,807 517,754 112,063 76,496 17,001 205,560
24 17,197 252,274 236,807 506,278 108,180 72,864 18,893 199,937
48 17,197 233,820 236,807 487,824 101,010 66,049 20,705 187,764
96 17,197 204,919 236,807 458,923 88,807 54,793 24,520 168,120

5.1 Setup

Dataset. We use the real dataset collected from Twitter by L. Weng et al.
[17]. We use standard preprocessing steps, similar to the steps used in [1] to
clean diffusion data. However, in order to obtain enough size of training data
for training nodes’ classifiers, we allow multiple activation records of the same
item for a node. After the preprocessing, each node has at least 20 activation
records, i.e. retweets and tweets with hashtags in Twitter, and each item, i.e.
hashtags, are adopted by at least 20 nodes. Moreover, there is no isolated node
left. The remaining social graph consists of 24, 045 nodes and 871, 745 directed
edges. The remaining activation records contain 8, 427 different items and the
number of all activation records is 1, 105, 316. The dataset spans from March 23
to April 25 in 2012, approximately one month long.

Factors. We first define some notations. Let degin(v) and degout(v) denote v’s
in-degree and out-degree in the graph. For an item i, we use tglo(i) to denote
the earliest time in which i is adopted by some node in the data and tloc(i, v, t)
to denote the earliest time in which i is exposed to v by an in-neighbor of v that
adopts i before time t. Let nodeglo(i, t) denote all nodes activated by item i before
time t and nodeloc(i, t, v) to represent in-neighbors of v which are activated by
item i before time t. For a directed edge from u to v, we use ratiofrom(v, u, t)
to denote the ratio that v’s adoptions are caused by u and ratiosame(v, u, t) to
denote the ratio that v’s adopted items are the same as u’s adopted items before
time t.

For an instance x = (f1, f2, ..., fm)[u,v,o,t,i], where node u tries to activate v by
item i before time t (xo = 1) or at time t (xo = 0), the features f1, f2, ..., fm are
composed of three types, structure-based, time-based and history-based features.
Structure-based features include degin(u), degout(u), degin(v), degout(v) and the
number of common neighbors between u and v. Time-based features are t −
tglo(i), t− tloc(i, v, t) and t(i, u)− t, where t(i, u) is the time that node u adopts
the item and if it is unavailable in the dataset, we assume t(i, u) − t = 0. The
first two are able to reflect global and local freshness. The last one is to measure
the adoption latency. History-based features are |nodeglo(i, t)|, |nodeloc(i, t, v)|,
ratiofrom(v, u, t) and ratiosame(v, u, t). Thus, there are m = 12 features in total
for training a node’s classifier in the experiment.

Multiple Factors-Aware Diffusion in Social Networks 79

Instances. We use the approach introduced in Section 4.1 to generate positive
and unlabeled instances from the dataset with different T for the most active
100 nodes, measured by the number of positive records in the whole dataset. The
statistics of training and testing instances are summarized as Table 1. In both
training and testing sets, we exclude instance x, xu of which is NIL, since we
want to learn transmission probability between two connected nodes for diffusion
models. Note that the positive instances for testing consist of positive instances
and unlabeled positive instances, while the negative instances for testing consist
of unlabeled negative instances. For each T , we use the earliest 20% instances
as the training set. From the latest 80% instances, the testing set only contains
instances related to pu,v that is trained in the training data for MFAD. Thus, the
satisfied testing instances are not too many. Moreover, the number of unlabeled
instances for training is much more than the labeled positive instances since the
earliest 20% time (∼ 6.6 days) is relative short and when a node u adopts an
item i at time t(i, u) but u’s in-neighbors all adopt i before t(i, u)− T , |N in(u)|
unlabeled positive instances will be generated.

Methods. We include the following three methods to predict activations of
nodes: (1) the logistic regression directly trained on positive and unlabeled
instances (LOGIST), which is the classical approach, (2) our proposed learn-
ing framework for the MFAD model (MFAD) and (3) the independent cascading
model (IC). Note that only MFAD and IC are diffusion models, while LOGIST
is a classification algorithm only and cannot be applied to other applications on
diffusion, e.g. influence maximization [10]. We select the IC model instead of the
LT model since IC is also a probabilistic diffusion model. The parameters of IC
are inferred by the maximum-likelihood estimation conducted in the same app-
roach of Section 4.2. For two connected nodes u and v, the influence probability

pu,v is |D+
u,v|

|D+
u,v|+|D−

u,v| for IC. While training the nodes’ classifiers for both LOGIST
and MFAD, the class imbalance problem is encountered, i.e. skewed class dis-
tribution. We use SMOTE[4], which doubles the size of the minority class, and
then apply SpreadSubsample [8] to undersample instances of the majority class
to balance the class distribution. Moreover, we set time constraints Δ+ and Δ−

in Eq. (3) and (4) as the same value of T . All methods are implemented in Java
with Weka [8] and executed in a PC with an Intel i7 3.4GHz CPU. The running
time of a run of MFAD for the same T does not exceed 2 hours, including time
for sampling, training 100 nodes’ classifiers and learning related transmission
probabilities.

Metrics. We use four metrics, precision, recall, F-Measure and accuracy, to
measure the results of activation prediction, based on true positive (TP), false
positive (FP), true negative (TN) and false negative (FN) instances. Precision
is TP

TP+FP . Recall is TP
TP+FN . F-Measure is 2×precision×recall

precision+recall and accuracy is
defined as TP+TN

TP+FP+TN+FN .

80 C.-K. Chou and M.-S. Chen

(a) F-Measure (b) Accuracy

Fig. 2. Overall Results

(a) Precision (b) Recall

Fig. 3. Results of Components of F-Measure

5.2 Results

The overall results of activation prediction are shown in Figure 2. Our MFAD
outperforms the other two methods significantly in the overall metrics, F-Measure
and accuracy. F-Measure in Fig. 2(a) concerns mainly on true positive, false pos-
itive and false negative instances, while accuracy in Fig. 2(b) takes true negative
instances into consideration. F-Measure is suitable for the scenario of retrieval
of activated nodes whereas accuracy is more suitable for the scenario of spread
estimation. MFAD works great for both scenarios. For the components of F-
Measure, MFAD is very effective in precision as shown in Fig. 3(a), which means
the size of false positive instances is much smaller than those of LOGIST and
IC. The recalls of MFAD and LOGIST are close to each other but much better
than that of IC as shown in Fig. 3(b). Moreover, as T increases, F-Measure and
accuracy become better for all methods since the positive unlabeled instances
are fewer and thus more positive instances are available for training classifiers.

In summary, MFAD is the best method to predict activation of nodes among
three methods. Most importantly, MFAD is a diffusion model and therefore
can simulate how information diffuses whereas LOGIST cannot. IC is also a
diffusion model, but it cannot reflect the state of an exposure precisely and thus
do not model the diffusion well. Although there is an extension of IC in [1],
called TIC, to consider the topic factor, the dataset does not have the detailed
textual information of tweets and hence we do not include TIC in the experiment.
Nevertheless, our MFAD model can consider the topic factor by defining new
features for nodes’ classifiers with ease, which does not require the modifications
of the learning framework.

Multiple Factors-Aware Diffusion in Social Networks 81

6 Conclusions

In this work, we propose the model of Multiple-Factors Aware Diffusion Model
(MFAD) which explicitly models influence transmission and adoption decision
and considers multiple factors flexibly that may affect adoption behaviors. The
learning framework of MFAD is independent of factors considered and is effective
as shown in the experiment. Therefore, MFAD has more flexibility and can be
applied to different scenarios for different purposes with ease. In the future, we
will design influence maximization algorithms for MFAD.

Acknowledgments. This work is in part supported by MOST of Taiwan (103-2221-
E-001-038-MY2).

References

1. Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation mod-
els. In: ICDM, pp. 81–90 (2012)

2. Brent, R.P.: Algorithms for minimization without derivatives. Prentice-Hall, Engle-
wood Cliffs (1973)

3. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in
social networks. In: WWW, pp. 665–674 (2011)

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

5. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)

6. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In:
KDD, pp. 213–220 (2008)

7. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: A data-based approach to social influ-
ence maximization. Proc. VLDB Endow. 5(1), 73–84 (2011)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

9. Hoang, T.A., Lim, E.P.: Virality and susceptibility in information diffusions. In:
ISWSM (2012)

10. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

11. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination
spread in a social network. ACM TKDD 3(2), 9:1–9:23 (2009)

12. Lee, W.S., Liu, B.: Learning with positive and unlabeled examples using weighted
logistic regression. In: ICML (2003)

13. Lin, C., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic
diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011)

14. Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in
networks. In: KDD, pp. 33–41 (2012)

15. Niculescu-mizil, A., Caruana, R.: Predicting good probabilities with supervised
learning. In: ICML, pp. 625–632 (2005)

16. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities
for independent cascade model. In: KES, pp. 67–75 (2008)

17. Weng, L., Menczer, F., Ahn, Y.Y.: Virality prediction and community structure in
social networks. Nature Scientific Report 3(2522) (2013)

